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ABSTRACT 

The convective heat t ransfer  between a p a r t i a l l y  

combustion gas and a f l a t  p la te  cooled by l i g h t  gas i n j e c t i o n  (hydrogen 

o r  helium) w a s  investigated experimentally. Gases were in jec ted  through 

a porous s t a i n l e s s  s t e e l  t e s t  sect ion instrumented with thermocouples t o  

obta in  l o c a l  heat t r a n s f e r  rates. These heat t r a n s f e r  r a t e s  were computed 

from energy balances performed on the porous sec t ion  undergoing steady 

s t a t e  heating 

With in jec t ion  of a l i g h t  gas the loca l  heat t r a n s f e r  r a t e  

decreased rapidly t o  an e s s e n t i a l l y  uniform value within six inches of 

the leading edge. Variation of the blowing parameter 

from 0.005 t o  0.01 decreased t h i s  uniform value of the heat t r a n s f e r  by 

F = povo/pev, 

100%. Comparison of r e s u l t s  with previous data  showed agreement f o r  

helium. However, hydrogen in jec t ion  resulted i n  heat f luxes up t o  100% 

g r e a t e r  than those measured by other  investigators.  This suggests that 

the effect iveness  of t ranspi ra t ion  i n  reducing convective heat t r a n s f e r  

w i l l  be reduced when dissociat ion of the injected s e r i e s  occurs, 
h 
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NOMENCIATURE 

C f / 2  sk in  f r i c t i o n  coe f f i c i en t  

S tanton number 

pwvJp u mass f l o w  r a t i o  

QQeUe Cpe(Tw-Te) cH 

e e  F 

M molecular weight of mixture 

P pressure 

convective heat t r ans fe r  t o  wall qcw 

q c s ~ s ' q m l  1 defined i n  Section 3.1 

R m i v e r s a 1  gas constant 

T temperature 

U ve loc i ty  p a r a l l e l  t o  p l a t e  

V ve loc i ty  perpendicular t o  p la te  

X distance along p l a t e  from leading edge of i n j ec t ion  region 

Y dis tance normal t o  p l a t e  surface 

Z thickness of porous sect ion 

Greek Symbols 

a thermal d i f  f us iv i ty  

E emissivi ty  of w a l l  surface 

A thermal conductivity 

P absolute  v iscos i ty  

V kinematic v iscos i ty  

f 2 = B  blowing parameter F/(Cf/2) 

P dens i sy  

Q Stephan Boltzmann constant 
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A l l  p red ic t ions  tend t o  be extremely op t imis t i c  compared t o  experimental 

curves ,  Also, most data  ava i lab le  were obtained under low temperature 

p o t e n t i a l  condi t ions.  Since the appl ica t ion  of t r ansp i r a t ion  cooling 

w i l l  be made where high enthalpy conditions a r e  encountered, f u r t h e r  

i nves t iga t ions  of t h i s  a rea  a r e  de f in i t e ly  needed t o  increase confidence 

i n  the  turbulen t  t r ansp i r a t ion  solut ions and the empirical  data  t o  the 

l eve l  of that under laminar condi t ions,  

During inves t iga t ions  made on the  a b l a t i v e  proper t ies  of var ious 

phenolics i t  has become obvious that  the p a r t  played by l i g h t  gases 

generated i n  the carburizing surface upon the thermal boundary layer  

i s  very i n f l u e n t i a l .  The advantages of low molecular weight gas 

i n j e c t i o n  have been pointed out by severa l  previous researchers .  6,9,10 

To f a c i l i t a t e  the study of the i n j e c t i o n  of a l i g h t  gas i n t o  a 

high temperature, turbulent ,  react ive boundary layer  an  ex i s t ing  

oxy-acetylene flame apparatus mentioned i n  References 11, 12,  and 13 

w a s  adopted, The flame apparatus provides a high temperature r eac t ive  

heat  source which simulates the problems of d i ssoc ia ted  a i r  a t  stagna- 

t i o n  condi t ions on f l i g h t  vehicles .  13 

The present r epor t  includes the descr ip t ion  of an  experimental 

study of t r ansp i r a t ion  cooling through a highly r eac t ive  turbulen t  

boundary layer  using two l i g h t  gases, helium and hydrogen, a s  i n j ec t ed  

mater ia l s .  
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1.0 INTRODUCTION 

The protect ion of a s o l i d  surface under condi t ions of intense thermal 

po ten t i a l s  has become important s ince  the advent of rocket  and s a t e l l i t e  

vehic les  which t r ave l  a t  hypersonic speeds. 

t ranspi ra t ion ,  f i lm  cooling, o r  ab la t ion  has received p a r t i c u l a r  a t t e n -  

t i o n  as the bes t  method ava i l ab le  t o  reduce the extreme hea t  t r a n s f e r  

r a t e s  encountered t o  acceptable magnitudes. I n  every case mass en ter ing  

the boundary layer plays a dual ro l e ,  f o r  it (1) a c t s  as a heat  s ink i n ,  

o r  on, the wall and (2)  a l t e r s  the heat t r ans fe r  c h a r a c t e r i s t i c s  of the 

boundary layer a s  i t  leaves the wal l .  

whether the mass i s  introduced by mechanical t r ans fe r  through porous 

wal l s  or  s l o t s ,  o r  whether i t  en te r s  i n  a se l f - con t ro l l i ng  manner by 

sublimation o r  melting. 

Mass t r ans fe r  i n  the form of 

This is  t rue  regardless  of 

The t ranspi ra t ion  of a l i g h t  gas i n t o  a r eac t ive  turbulent  boundary 

layer  a s  a spec ia l  subtopic of the l a rge r  problem deserves a t t e n t i o n .  

Gas in jec t ion  i n t o  laminar boundary layers  has received the g rea t e r  por t ion  

of a l l  previous inves t iga t ive  e f f o r t s  because i t  i s  amenable t o  more o r  

l e s s  rigorous a n a l y t i c a l  so lu t ion .  Extensive bibl iographies  covering 

t h i s  work may be found i n  References 1, 2,  and 3 .  Turbulent boundary 

layers  c h a r a c t e r i s t i c a l l y  do not allow r igorous so lu t ion  of the governing 

d i f f e r e n t i a l  equations due t o  lack of knowledge concerning the turbulent  

exchange mechanisms. 

theor ies  which require  empirical  data  t o  accomplish a so lu t ion .  Dorrance 

and Dore, R ~ b e s i n , ~  and Van Driest' inves t iga ted  ana ly t i ca l ly  a i r  in jec-  

t i o n  i n t o  a i r ,  and Rubesin and Pappns fore ign  gas in j ec t ion  i n t o  a i r ,  

both under turbulent  condi t ions.  Unfortunately, Rubesin and Pappas' and 

Dorrance and Dore's r e s u l t s  do not  agree wel l  with experimental r e s u l t s .  

Most r e s u l t s  a r e  based on complex mixing length 

4 
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c o i l s  and degreased f o r  acetylene service) .  

formation during s t a r t i n g  and stopping the flame. 

f i r s t  and the acetylene off f i r s t  carbon formation and deposit ion are 

e s s e n t i a l l y  eliminated. The impingement of carbon onto the porous p la te  

w a s  observed during preliminary runs. This problem a l s o  arose with 

previous invest igators .  

This w a s  done t o  reduce carbon 

By turning the oxygen on 

3 

2.2 Model Construction and Instrumentation 

A 1/4 inch thick p la te  of porous s t a i n l e s s  s t e e l  formed one w a l l  

of a plenum chamber. (See Figs.  4 and 5). The p l a t e  was instrumented 

with thermocouples which made possible the measurement of steady state 

heat f luxes.  Due t o  the high temperatures and high heat r a t e s  involved, 

s teps  were taken t o  water cool the plenum chamber walls while minimizing 

conduction heat losses  from the t e s t  specimen i t s e l f .  The t e s t  sec t ion  

w a s  constructed from a 3 X 6 inch by 1/4 inch th ick  piece of AISI  316 porous 

s t a i n l e s s  s t e e l .  The mean pore opening was 0.0008 inches o r  20 microns 

with a mean i r regular  p a r t i c l e  diameter of 65 microns. 

chosen on the bas i s  of recomendations of previous invest igators .  

.k 
This s i z e  was 

14-18 

Figure 5 i s  a cross-section of the p l a t e  and chamber config- 

uration. Side walls of the chamber were 0.008 inch thick A I S I  304 

s t a i n l e s s  s t e e l  shim, which were copper and nickel-gold brazed t o  the 
* 

porous p l a t e  and s i l v e r  soldered to the oxygen-free copper bases. 

* 
Quoted by the manufacturer, Mir ro  Mettal ic  Corporation, a subsidiary 

of P a l l  F i l t r a t i o n  Company. 
** 

Leaks which arose during operation necessi ta ted the addi t ion of small 

re ta in ing  screws along the edges of the porous p l a t e  t o  s t i f f e n  the 

junct ion t o  the shim side w a l l s .  

4 



2.0 EXPERIMENTAL EQUIPMENT AND PROCEDURE 

The purpose of the experimental program was t o  obtain convective heat 

t r a n s f e r  ra tes  t o  a f l a t  p la te  under reac t ive  turbulent flow conditions 

with as wide a range of t ranspi ra t ion  and surface temperature conditions 

as possible. 

because they a r e  reputed t o  have the g r e a t e s t  e f f e c t  on convective heat 

t r a n s f e r  per un i t  mass injected.  6’9’10 

was equal t o  the sensible  heat increase of the in jec ted  gas aczoss a 

porous section plus the energy l o s t  by rad ia t ion .  Ef for t s  were made t o  

reduce conduction losses  t o  a negl igible  amount. 

Separate programs were car r ied  out t o  determine f r e e  stream con- 

d i t i o n s  a t  various distances from the leading edge and t o  specify the 

surface gas concentrations during in jec t ion .  

Hydrogen and helium were chosen f o r  the injected gases 

The convective heat t r a n s f e r  r a t e  

2 . 1  T e s t  System Arrangement 

The t e s t  apparatus consisted of a multiple nozzle oxygen- 

The acetylene flame head and a specimen holder and exhaust duct. ’’ 
equipment was so designed t h a t  when oxygen and acetylene were passed 

through the flame head and burned a two-dimensional high temperature 

gas stream was produced which provided p a r a l l e l  flow heating t o  a 

3 X 6 inch t e s t  area.  The average non-blowing heating r a t e  has been 

2 measured t o  be approximately 40 BTU/ft sec.” The gas v e l o c i t i e s  were 

approximately 200 f t / sec  with approximate gas temperatures of 5000 OF 

a t  atmospheric pressure. 

be seen i n  Figs. 1, 2, and 3. 

The general arrangement of the t e s t  area can 

The manual s t a r t i n g  valve f o r  cont ro l l ing  the react ing gases was 

replaced by two normally closed solenoid valves (equipped with s i l v e r  shading 

3 



The lower s i d e  of the plenum chamber was protected by cooling water c o i l s .  

The seven upper chromel-alumel thermocouples were buttwelded and mounted 

i n  0.016 x 0.016 inch s l o t s  i n  the surface of the p la te ;  the seven lower 

thermocouples were spot welded along the bottom of the plate.' '  

inse t tof  Fig. 5). Care w a s  taken t o  or ien t  each thermocouple i n  an  iso-  

thermal l i n e  normal t o  the flow direction. Smal l  (0.032 inch 0.d.) 

ceramic tubing e l e c t r i c a l l y  insulated the  upper thermocouple lead wires 

from the p la te .  

A Astroceram cement which has a maximum service temperature of 4300 O F .  

Three 1/8 inch 0.d. s t a i n l e s s  s t e e l  surface concentration probe tubes 

were f o r c e - f i t t e d  i n t o  the porous plate ,  brought through the chamber, 

and sealed with f i t t i n g s ,  as shown i n  the i n s e r t  of Fig. 5. 

of thermocouple wires were potted i n t o  two shor t  sect ions of copper 

tubing with epoxy r e s i n  and sealed i n  the plenum chamber w a l l  with 

standard tube f i t t i n g s .  

through a 1/8 inch diameter copper tube d r i l l e d  t o  d i s t r i b u t e  the gas 

the length of the plenum chamber. The chamber was a l s o  instrumented t o  

give plenum chamber gas temperature and pressure. 

(See 

The tubes were held i n  place with high temperature Type 

Bundles 

The transpirated gas entered the plenum chamber 

2.3 Velocity Measurements 

To obtain approximate boundary layer  momentum thicknesses and 

f r e e  stream veloci ty  d is t r ibu t ions ,  a water cooled stagnation tube and 

micrometer t ravers ing mechanism were constructed. The experimental 

arrangement i s  shown i n  Fig. 3. The water cooled probe w a s  designed 

with a 1/16 inch o.d. tube surrounded by a 1/4 inch 0.d.  copper water 

jacket .  The water was not recirculat ing but .exited upwards and back 

through three small j e t s  on the top of the probe t i p .  During operation 

5 



these je ts  were observed t o  be def lected downstream and out  the exhaust 

duct. 

and had a time constant of approximately 5 seconds, 

ments were r e s t r i c t e d  t o  dis tances  g r e a t e r  than 0.030 inch from the 

p la te ,  t h i s  was not considered disadvantageous s ince evaluation of 

measurements i n  a laminar sub-layer region with t ranspi ra t ion  using 

an impact tube would be anomalous. 

w a s  a ca l ibra ted  micrometer screw mounted under the specimen i n  such 

a manner that the probe could be moved t o  any desired pos i t ion  from 

the leading edge. A second screw provided a horizontal  t raverse .  

S t a t i c  pressure measurements indicated that atmospheric 

The stagnation tube w a s  at tached t o  an incl ined water manometer 

Although measure- 

The v e r t i c a l  t ravers ing mechanism 

pressure conditions exis ted across  the flame. Stagnation measurements 

were made a t  one inch in te rva ls  along the p l a t e  from the surface t o  

midstream i n  0.025 inch increments. Free stream v e l o c i t i e s  are p lo t ted  

versus p l a t e  posi t ion i n  Fig. 6 .  A typ ica l  boundary layer  ve loc i ty  

prof i le  f o r  blowing and nonblowing conditions depicts  the turbulent  

character of the flow i n  Fig. 7. 

2.4 Flame Temperature 

The temperature i n  the gas stream w a s  measured by the sodium 

l i n e  reversal  technique* 

been described i n  Ref. 124,. ‘Cl.#ee measurements were made with an enclosed 

t e s t  sect ion which reduced the f r e e  stream temperatures and v e l o c i t i e s .  

The most s a t i s f a c t o r y  technique found f o r  introducing sodium i n t o  the 

flame was t o  f a s t e n  s h o r t  prisms of sodium hydroxide i n t o  an L-shaped 

j i g  attached t o  the micrometer screw located beneath the t e s t  sec t ion  

and to draw the s a l t  down i n t o  the flame a t  a r a t e  needed t o  maintain 

The general  apparatus arrangement used has 

6 



* a f a i r l y  constant flame brightness. 

was placed before the spectrometer entrance s l i t ,  the eye could perceive 

va r i a t ions  i n  background t o  l i ne  brightness with a grea te r  accuracy. 

It was a l s o  found that i f  a f i l t e r  

Both the reference lamps and the op t i ca l  pyrometer used were 

ca l ibra ted  pr ior  t o  the tests with an accurate standard, Most measure- 

ments were made along the length of the test sec t ion  with no t ranspi ra t ion  

of hydrogen o r  helium in to  the boundary layer ;  however, one measurement 

was made near the end of the section with a very high in jec t ion  r a t e  a t  

the surface (F = 0.1). No s igni f icant  va r i a t ion  of f r ee  stream temper- 

a tu re  due t o  t ranspi ra t ion  could be found a t  t h i s  point.  

Recent information avai lable  on the emissivity of TaC would 

predict  t h a t  the brightness temperature of the reference l i g h t  would 

20,21 closely approximate that Qf the flame as is  assumed f o r  tungsten lamps; 

however, some of the measurements were repeated wi th  tungsten lamps to  

check r e su l t s .  It is  f e l t  that, with the extra  precautions taken, the 

f i n a l  r e s u l t s  f o r  flame temperature shown i n  Fig. 6 a r e  well within the 

2150 OR range predicted by Russ. 12 

2.5 Radiation 

The emissivity of the exhaust gas (considered t o  be "gray1') 

was found by previous invest igators  t o  have a value of approximately 

0.001.L2s22 An appl ica t ion  of the Stefan-Boltzmann l a w  shows that 

the rad ia t ion  is  a maximum of two percent of the smallest  heating 

r a t e ,  which i s  ins igni f icant .  

Due t o  the porous nature of the surface a s in te red  mater ia l  

has been found t o  have an emissivity an order  of magnitude l a rge r  

a 
Kodek Neutral Density No. 3 Wrattan F i l t e r .  

7 



than that of conventional mater ia ls ,23 

that rad ia t ion  from the specimen surface would be s igni f icant .  

mine the ne t  rad ia t ive  heat f l u x  away from the p l a t e  two mirror-type 

d i rec t iona l  radiometers (Leeds and Northrup Rayotubes) were positioned 

v e r t i c a l l y  over the apparatus. They viewed representat ive c i r c l e s  of 

about one inch i n  diameter on the surface.  To separate the r a d i a t i v e  

f l u x  of the gas from that of the p la te ,  separate measurements were taken 

of the rad ia t ion  from the flame alone. 

On t h i s  b a s i s  it was considered 

To de ter -  

2.6 Boundary Layer Composition 

On the bas i s  of a simple ana lys i s  by Denison' the boundary 

layer w a l l  compositions may be calculated from the knowledge of the f r e e  

stream concentrations and blowing parameter 

However, s ince t h i s  i s  a c r i t i c a l  s t e p  i n  the semi-analytical  ca lcu la t ions  

of most ex is t ing  heat t ransfer  predict ion schemes, i t  was considered 

important t o  make some experimental measurements. 

B = 5 = (povo)/(P u ) (2 /c f ) -  e e  

Assuming the basic const i tuents  of the equilibrium f r e e  stream 

a r e  C02,  H2, COY and H f o r  a 1:l f u e l  t o  oxygen r a t i o ,  with N2  and O2 

possibly diffusing across  the stream i n  small q u a n t i t i e s ,  a gas analyzer 
* 

of the  micro-Orsat design was b u i l t .  (See Fig. 8. )  

Gas samples were a l s o  analyzed by gas chromatography, I n i t i a l l y  

This a modified Perkin and Elmer Vapor Fractometer Model 154 was used. 

instrument had a low s e n s i t i v i t y  f o r  hydrogen and could not detect  helium 

due t o  use of a helium c a r r i e r  gas. I n i t i a l  measurements v e r i f i e d ,  however, 

* 
Unfortunately, the r e s u l t s  of the operation of t h i s  apparatus were never 

f e l t  t o  be v a l i d  due t o  the presence of leaks t o  the atmosphere, Hence a l l  

reported concentration r e s u l t s  were determined by gas chromatography. 

8 



t h e  assumption made i n  che ca lcu la t ion  of t ransport  properties f o r  the 

helium i n j e c t i o n  case t h a t  the r a t i o  of hydrogen t o  the carbon monoxide 

across  the  boundary layer  remained essent ia l ly  constant,  Subsequent 

analyses were made on a Beckman GC-2 Gas Chromatograph using nitrogen ae 

a c a r r i e r  gas. 

may be found i n  Appendix Bo 

Saaples f o r  analysis  were obtained throxgh scainless szeel  

Details of the chromatograph c a l i b r a t i o n  and operation 

probes incorporated i n t o  the apparatus (see F igd  5), Samples were haken 

during the t e s t  runs a f t e r  steady s t a t e  gas reached, a s  indicated by the 

surface thermocouples, I n  order t o  insure a very weak suction which 

would not significanrPy a f f e c t  the boundary layer  an  a i r - a s p i r a t o r  w a s  

used, 

hypodermic syringe and were s tored i n  8 cc evacuated medical serun! 

b o t t l e s ,  The serum b o t t l e s  remained gas t i g h t  over extended periods 

of time and were completely sat isfactory as a transporting or  scoring 

medium. It w a s  f e l t  t h a t  drawing and s tor ing samples a t  atmosphereic 

presscre would reduce the probabi l i ty  of contamination before ana lys i s ,  

as has been experienced by previous invest igators ,  

Samples were removed from the probing system with a gas- t ight  

24 

2,7 Transient Measurement of Ze ro  Transpiration Heat U t e s  

To e s t a b l i s h  a b a s i s  f o r  the comparison of r e s u l t s  the zero- 
I 

t ranspi ra t ion  heat r a t e s  t o  the w a l l  surface need t o  be known, An A I S 1  

304 s t a i n l e s s  s t e e l  calorimeter place i l /S t t  2( 3" X 6It) was instrumented 
I 1 2  

with six chromel-alumel themocouples in the manner described by Russ 

I 

l and This p la te  was mounted flush with the GR 28 f i r e b r i c k s  and 

posit ioned 1/4 inch below the bottom row of flame nozzles, and two inches 

downstream from the nozzles, 

Honeywell Visicorder,  

Thermocouple outputs were recorded on a 

9 



2,8 Test Procedure 

The porous p l a t e  was cleaned ca re fu l ly  to remove o i l s  from 

handling and construction, 

the  oxyacetylene flame path 1/4 inch below the bortom row of Eozzles and 

with its leading edge two inches downstream f ron  the nozzles, The p h t e  

The p l a t e  was then posit ioned p a r a l i e l  t o  

was surrounded with ca re fu l ly  c u t  and f i t t e d  GR28 f i r e b r i c k s  t o  p-.- r-sene 
* 

a continuous f l a t  surface t o  the flame. Continuous cracings of the  

16 thermocouples' output were obtained w i t h  a Minneapolis Fioneywell 

906A-L Visicorder,  Since there  were only nine of the d i r e c t  cusrent  

operated galvanometers ava f l ah l s  f o r  the Visicorder,  che thermococples 

wsre c i r cu i t ed  through a set  of re lays ,  and a comrutaring devlce 

a l te rna ted  the s igna l s  t o  the Visicorder,  

The recorder galvanoneten were ca l ib ra t ed  before and a f t e r  

each series of t e s t  runs f o r  each temperature range t o  inscre  accuracy, 

No signif  i can t  deviations occurred, 

Hydrogen o r  heiium was drawn from two pressure b o t t l e s  Rant- 

folded together ou ts ide  the  building and regulated by two gas regula tors ,  

Flow r a t e s  were measured w i t h  Fischer and Porter  Piovracors, 

e ra tures  and pressures of the gases were measured a t  the flowratore t o  

permit accurate  ca l cu la t ion  of mass flow rates,  

The temp- 

During the s t a r t i n g  period of each run argon o r  helium ra rhe r  

than hydrogen w a s  t ranspirated through the place,  Before exLinguFshing 

the  flame, argon was again introduced i n t o  the plenum chamber acd the 

hydrogen flaw turned o f f  by means of a three-way valve,  Such 3 precaution 

prevented i g n i t i o n  of the hydrogen and purged l ines  leading t o  rhe plenum 

chamber, (This precaution was not necessary f o r  heiiuan opera?ion,$ 

* 
During a number of the tes t  runs the  br icks  were replaced by a f i t t e d  

water cooled brass  plate.  
10 
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3.0 HEAT TRANSFER AND VELOCITY DISTRIBUTIONS 

3.1 Convective Heat Transfer Distr ibut ion 

The t e s t  records provided a se t  of steady state temperature 

readings, injected gas mass flow ra t e s ,  and t o t a l  rad ia t ion  radiometer 

readings. The convective heat f l ux  t o  the p la t e  is calculated from 

the following 

qC 

where q, is 

and d i f fus ive  

energy balance: (See Fig. 9) .  

the heat t ransferred from the boundary layer by conductive 

mechanisms i n  the gas; qm and q a r e  heat r a t e s  of 
1 ,2 

rad ia t ion  away from the p la te ;  represents the increase i n  sensible  

heat of the injected gas; qla and qlb are heat  rates of energy con- 

ducted in  and out of the element in the d i rec t ion  along the p la te ;  and 

is  the heat r a t e  of rad ia t ion  f romthe  gas t o  the p l a t e  surface.  
qrg 

Since the t e s t s  were run with the p l a t e  unenclosed, the ne t  

rad ia t ion  between a d i f f e r e n t i a l  surface area of the p la te  and the black 

room surrounds is: 

The t o t a l  emissivity may be determined from radiometer readings. The 

radiometer measures the t o t a l  energy radiated by the t e s t  surface 

plus the rad ia t ion  of the flame i n  the normal di rec t ion  

that the emissivity is independent of direct ion,  the Stefan-Boltzmann 

law can be wr i t ten  as:  

(Ew) 

(Ec) .  Assuming 

11 



when the radiometer looks 

when the radiometer looks 

4 
E 8 * 15: TbRf 

hence: / 

through the flame a t  lrhe su r face ,  S imi la r ly ,  

at the  flame only: 

r+ 4 
bRf 

- T  

4 
'bR 

e *  
P 

*W 

( 3 . 4 )  

Therefore the t o t a l  emissivi ty  of the specimen surface a t  any given temper- 

a tu re  can be found from the radiometer and themacouple readings,  
d 

The r a t e  of increase of the sens ib le  eaergy of the in j ec t ed  gas 

26 is  given by: 

The temperature of the coolant Leaving the p l a t e  surface will be t h a t  of 

the p la te  surface.  17 27 

The n e t  r a t e  of conduction through the elemental volume is 

given by the re la t ion :  

d2T 
q l a  - '1b = km ( 2)m 

2 2  where km i s  the thermal conductivity of the specimen, and (d T/dx )m 

is  the second der iva t ive  of the mean temperature d i s t r i b u t i o n  of the upper 

and lower porous p l a t e  surface temperatures, 

* 
Evaluation of the radiometer output fo r  each run r a v e a h  an average t o t a l  

emissivity of 0065. This value i s  of the order of magnitude predicted by 

Eckert f o r  such a porous mater ia l .  23 

2 2  



Therefore, a t  any one location on the p la te  surface,  the convec- 

t i v e  heat rate per u n i t  surface area may be found from: 

Studies of gas flow through a plane wall of a porous material  

have revealed the following relat ionship between mass flow r a t e  and the 

28 

2 2 

several  governing parameters 

P (3.9) 

Since the pressure difference across the porous sec t ion  may be assumed 

constant,  var ia t ions  i n  loca l  mass flow r a t e  depend on the local  wall 

temperature and i t s  e f f e c t s  on viscosity.  Hence one may wr i te  f o r  the 

loca l  i n j e c t i o n  mass rate 

( 3  ., 10) 

where i t  has been assumed v iscos i ty  var ies  inversely with temperature, 

and (pv), is 

G -s" (? jjZdx 
0 

where G = t o t a l  mass flow of coolant lb sec ml 
w = width of porous sect ion 

13 



= w a l l  temperature a t  pos i t ion  6 inches downstream from 
IPL 

leading edge of porous sec t ion  

= l oca l  wall temperature. a;J 

The thermal conductivity of porous s t a i n l e s s  s t e e l  AESI ,316 

may be ob"cained from the  following r e l a t ion :  

where p = density of porous s t a i n l e s s  s t e e l  

29 
c = thermal capaci ty  of A I S 1  316 s t a i n l e s s  s%eel 

a: = e x p e r i r ~ n t a l  thermal d i f f u s f v i t y  of porous s t a i ~ l l e s s  s tae !  

m 

m 

The var ia t ion  of (Y with temperature w a s  measured experimentally by a 

t rans ien t  technique out l ined i n  Appendix A a s  developed by Boozer, 
30 

3 . 2  Velocity P r o f i l e s  

Becailse of the low v e l o c i t i e s  there  were no comgressible cha rac -  

t e r i s t i c s  such a s  shock waves t o  comFlicate the evaluat ion of the s t a g n ~ ~ t i o s !  

pressures measured by the p i t o t  tubs, hence the velocity was r e l a t ed  t o  the 

stagnation pressure by: 

The density in the stresn,, however, varied widely because of the l a rge  

temperature changes. Assuming that large l i g h t  gas concentrations were  

confined t o  the laminar sublay.er, the following assumption based on 

Reynolds' analogy for P r  c lose  t o  1 was used; 

14 



U 
U 

T - Tw 

Te - Tw e 
- -  - 

I and from the perfect  gas l a w :  

I 

p p m  
RT 

By choosing M = 19.34 t h i s  closely matches a c t u a l  density conditions 
I 31 
I 
l over a wide  temperature range. 

Subst i tut ing the l a t t e r  two re la t ions  i n t o  the f i r s t  gives 

f i n a l l y :  
I 

I where (po-p) is  determined from the water manometer reading by: I 

Y A h  
12 (Po-P> = - 

I Although the above expression i s  not precise, we may assume f a i r  accuracy 

??I 1. The veloci ty  p r o f i l e s  were PrT f o r  turbulent  boundary layers  and 

used t o  ca lcu la te  momentum thicknesses for  the boundary layer  which I 

eventually led t o  the determination of an equivalent leading edge posit ion.  

The c h a r a c t e r i s t i c  shape of the veloci ty  p r o f i l e  a l s o  v e r i f i e d  t h a t  the 

boundary layer  had not separated from the p la te  due t o  t ranspi ra t ion  

v e l o c i t i e s .  (See Fig. 7). 

~ 

3.3 Evaluation of Calorimeter Plate  Results 

Test r e s u l t s  yielded a temperature h is tory  of the centers  of 

several  one inch sect ions of the plate .  The heat f l u x  i s  calculated from 

15 



the  calorimeter equation: 

dT = pzc - qP d.r (3.12) 

where p = p l a t e  density 

z = p la t e  thickness 

c = heat  capacity of p l a t e  material 

dT/d.r = slope of temperature h is tory .  

A portion of the thermal energy passes through the calorimeter 

p l a t e  i n t o  the  support b r i ck ,  

so l id  subjected t o  a l i n e a r  temperature r ise,  then one may write:  

I f  one assumes the b r i ck  i s  a semi- inf ini te  

(3.13) 

where X = thermal conductivity of b r i ck  

A = slope of surface temperature h i s to ry  

T = t i m e  

(u = thermal d i f f u s i v i t y  of b r i ck  

Total hea t  flux is  the sum of ( 3 . 1 2 ) ,  ( 3 . 1 3 ) ,  and a r ad ia t ion  term, hence: 

dT 2 A 7  4 
dT + Y T w  

= z c - + A  
J X  7 

16 

(3 .14)  



4.0 DISCUSSION OF RESULTS 

4.1 Heat Rate Distr ibut ions 

Data were taken a t  four d i f fe ren t  t ranspi ra t ion  conditions 

throughout the ava i lab le  range. The upper l i m i t  was determined by the 

maximum in jec t ion  r a t e  the boundary layer would withstand without sep- 

a ra t ion ,  and the lower limit was determined by the maximum temperatures 

a t  which the brazed j o i n t s  of the porous plenum chamber could be expected 

t o  renrain in t ac t .  

under the same t ranspi ra t ion  condition was very sa t i s fac tory .  

s ide (upper) and the coolant gas s i d e  (lower) steady s t a t e  temperatures 

of the porous p l a t e  are plot ted versus posit ion i n  Figs. 10, 11, 12, and 

13, f o r  the d i f f e r e n t  i n j ec t ion  r a t e s .  

forward plenum chamber w a l l  is evident. 

The consistency of experimental data from run t o  run 

The flame 

The e f f e c t  of end losses  t o  the 

Only the maximum t ranspirat ion r a t e  of helium was studied 

because the steady s t a t e  temperatures of the equipment were i n  the 

c r i t i c a l  range. 

l a t ed  by the procedure described i n  Section 3.1. 

quan t i t i e s  t o  the no-transpiration heat rates obtained by a calorimeter 

p l a t e  (See Sections 2.7 and 3.3), is plotted i n  Fig. 14 versus p l a t e  

posit ion.  The average value of the blowing parameter F was 0.01; 

however, due t o  the wall temperature var ia t ion,  the ac tua l  loca l  injec-  

t i on  r a t e s  var ied from 0.0088 a t  the leading edge to  0.0130 a t  the 

t r a i l i n g  edge. The in jec t ion  of helium (F 0.01) reduced the heat 

t r ans fe r  r a t i o  q/q 

edge. 

supposed that extrapolat ion of inject ion e f f e c t s  t o  points fu r the r  down- 

stream would show comparatively small fur ther  reductions. 

The loca l  heat t ransfer  r a t e s  t o  the wall  were calcu- 

The r a t i o  of these 

from 1 a t  the leading edge t o  0.24 a t  the t r a i l i n g  
0 

This reduction appears t o  be asymptotic i n  nature,  and it may be 

I 
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Three t ranspi ra t ion  conditions were studied wi th  hydrogen injec-  

t ion.  

0.005. The ac tua l  i n j e c t i o n  ranges var ied from 0,0066 t o  0.0115, 0.8045 

t o  0.0081, and 0,004 t o  0.0063, respect ively.  The r a t i o s  of the loca l  

heat  t ransfer  r a t e s  t o  the loca l  zero t r a n s p i r a t i o n  values are p lo t ted  i n  

Fig. 15 versus p l a t e  posit ion.  The i n j e c t i o n  of hydrogen (F Q 0.1) re- 

duced the heat t r a n s f e r  r a t i o  q/qo t o  0.18 i n  six inches. Hydrogen 

inject ion a t  

same pla te  length. Hence a 100% increase i n  blowing r a t e  (from 0.005 to  

0.01) reduced the heat t r a n s f e r  r a t i o  a t  the t r a i l i n g  edge by 100% also. 

The average values of the blowing parameter were 0.01, 0.0066, and 

F 2 0.005 reduced the heat t r a n s f e r  r a t i o  t o  0,37 i n  the 

4.2 Surface Concentration Measurements 

Results of the ana lys i s  of gas samples from the one, two:, and 

three inch posi t ions along the p la te  f o r  the various runs are p lo t ted  i n  

Figs. 16 and 17. 

Chromatograph using a nitrogen c a r r i e r  gas. The evaluation technique i s  

outlined i n  Appendix B. 

A l l  data shown were obtained with a Beckman GC-2 Gas 

The w a l l  mass f r a c t i o n s  f o r  hydrogen in jec t ion ,  f o r  which more 

data  points are avai lable ,  a r e  in te rna l ly  cons is ten t ;  that is, the higher 

inject ion r a t e s  produce higher w a l l  mass f rac t ions .  The helium data d i s -  

play the expected lower values i n  the i n i t i a l  in jec t ion  region which 

increase i n  the downstream di rec t ion .  The need f o r  more data is apparent. 

More samples were taken than the data points  presented. Unfortunately, 

r e s u l t s  were not obtained from the o thers  due t o  e r r a t i c  chromatograph 

behavior. The placement of the sample probes w a s  made with the in ten t ion  

of rotat ing the test  sec t ion  180" t o  obta in  f u r t h e r  concentration data a t  

downstream posit ions.  This idea was not pursued because of e r r a t i c  torch 

and chromatograph behavior. 
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The dashed l i n e s  on Figs, 16 and 17  represent  w a l l  mass f raccions 

6 10 or  Ness. based on ca lcu la t ions  using the methods of Rubesin and Pappas 

The experimental data i n  the leading edge region i s  lower than t h a t  pre-  

d ic ted .  

before f i n a l  conclusions can be drawn. 

A program including more samples a t  more locat ions i s  necessary 

4 , 3  Error  Analysis 

To determine the  v a l i d i t y  of the experimental r e s u l t s  reported 

herein an  e r r o r  ana lys i s  was made t o  find the probable propagation of 

randon e r r o r s  i n to  the f i n a l  r e s u l t s  a s  displayed on the  various f igures .  

Thc e v a h a t i o n  technique is incorporated i n  Appendix C. Wall temperature 

measurements shown i n  Figs. 10 to  13 were found t o  include a probable 

accuracy of 5%, The non-transpirat ion heat f luxes  ca lcu la ted  would nor- 

mally vary no more than 4.25%. The resu l t ing  accumulated probable e r r o r  

i n  the heat  t r ans fe r  r a t i o  is 6.7% f o r  helium in j ec t ion  and 7.7% 

f o r  hydrogen in jec t ion .  

of probable e r r o r  indicated by l imi t ing  crosses .  

q/qo 

The r e s u l t s  included i n  Fig. 18 have t h e i r  ranges 

Consideration of the data in Figs .  10 through 13 w i l l  ind ica te  

va r i a t ions  which obviously exceed those suggested by the e r r o r  ana lys i s .  

It i s  evident  t h a t  systematic e r r o r s  a r e  present  desp i te  care  taken t o  

minimize t h e i r  appearance. Smoothing curves were drawn commensurate with 

the au tho r ' s  experience with the equipment operat ion.  

4.4 Comparison with Previous Invest igat ions 

Comparison of the data obtained i n  t h i s  inves t iga t ion  for  helium 

and hydrogen gas in j ec t ion  with previous r e s u l t s  i s  made i n  Fig* 18, where 

q/qo is p lo t ted  versus C F(x)/C CHo(x). Use of the l a t t e r  parameter 
p i  pe 
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8 has been proposed by Woodruff; 

suggested by Eckert. As can be noted, the helium in j ec t ion  data f a l l  

am>% previous data near the average curve determined by Woodraff; however, 

the hydrogen data points a r e  above the curve as  much a s  100%. 

it i s  similar t o  the quantity previocs’ly 

32 

The most obvious difference between the conditions experienced 

with the hydrogen in j ec t ion  studied herein and t h a t  of previous inves t i -  

gators  i s  that the t ranspi ra ted  gas experiences tempera Iczrres which a r e  

capable of dissociat ing i t  i n t o  atoms. I f  such a condition can r e s u l t  

i n  lower e f f e c t i v e  blockage of heat t o  the  w a l l  than has been previously 

experienced a t  lower temperatures the in t e rna l  mechanisms of microscopic- 

and macroscopic flow deserve fu r the r  study. Recent, design analyses have 

suggested the protect ion of missile skins under hypersonic f l i g h t  condi- 

t ions  u s h g  hydrogen as a t ranspirated gas--present r e s u l t s  suggest 

caution i n  such an appl ica t ion ,  

Comparison of Figs.  14 snd 15 revea ls  t h a t  the reduction i n  heat 

t ransfer  r a t i o  i n  the leading edge region was g rea t e r  f o r  helium than f3r 

hydrogen a t  equivalent blowing r a t e s .  

associated with the r e s u l t s  discussed above, an a l t e r n a t i v e  suggestion 

might be that the hydrogen was combining with a i r  entrapped i n  the burning 

acetylene mixture a t  the torch t i p s .  

in jec t ion  i n  a stagnation region and measured heat t r ans fe r  r a t i o s  

grea te r  than uni ty .  He concluded that t h i s  r e s u l t  was due t o  hydrogen 

combustion i n  the boundary layer .  

Aithough t h i s  behavior m y  be 

Barber33 investigated hydrogen 

q/qo 
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5.0 RECOMMENDATIONS 

The evidence of t h i s  experimental study ind ica tes  frrrther research 

should be centered around the following points: 

1. The ideas  suggested by hydrogen in j ec t ion  and d issoc ia t ion  

a t  high temperatures should be examined. It must be de te r -  

mined i f  the  rise i n  heat t r ans fe r  r a t i o  observed with 

hydrogen is  i n  t r u t h  due to d issoc ia t ion  and i ts  e f f e c t  on 

concentration gradients .  

2. The techniques used t o  determine experimental wall  concen- 

t r a t i o n s  used herein do  not appear adequate. Since the wall 

mass f r ac t ions  w i l l  be an important boundary condi t ion i n  

any ana lys i s ,  an accurate  measurement of these quan t i t i e s  is 

necessary t o  ve r i fy  any theory proposed. 

Further  experimental inves t iga t ion  of the t r ansp i r a t ion  cooling 

problem using the equipment out l ined i n  t h i s  repor t  woslld not sppear to be 

advisable  u n t i l  ana lys i s  reveals  more about the in t e rna l  nature  of the  heat 

t r ans fe r  mechanism under d issoc ia t ion  conditions. 
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6.0 CONCLUSIONS 

On the bas is  of the r e s u l t s  obtained i n  t h i s  experiment the 

following conclusions may be drawn: 

1. In jec t ion  of low molecular weight gases such as helium and 

hydrogen may reduce by 80% t o t a l  heat t r a n s f e r  r a t e s  through surfaces  

encountering turbulent  boundary layer  flows. 

2 ,  An increase by a f a c t o r  of 100% i n  such i n j e c t i o n  r a t e s  

may reduce the heat t r a n s f e r  rates by a f a c t o r  of 100% a lso .  

3. The appl ica t ion  of hydrogen as a t r a n s p i r a t i o n  agent i n  

conditions where d issoc ia t ion  may occur should be approached with caution 

due t o  the f a i l u r e  of hydrogen i n  t h i s  experiment t o  reduce heat  t r a n s f e r  

t o  the extent previously observed under non-dissociation conditions.  

4 ,  In  view of the importance of the w a l l  mixture concentration, 

and i n  view of the disagreement between measured wal l  mass f r a c t i o n  con- 

d i t ions  and those predicted by present a n a l y t i c a l  mathods, a t t e n t i o n  

should be directed both toward f u r t h e r  a n a l y t i c a l  e f f o r t  and b e t t e r  

measuring techniques. 
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APPENDIX A: THERMAL DIFFUSIVITY MEASUREMENTS OF POROUS STAINLESS STEEL 

Although extensive in fo rmt ion  i s  ava i lab le  f o r  the thermal 

proper t tes  of s o l i d  s t a i n l e s s  s t ee l s ,  l i t t l e  e f f o r t  has been made to  

determine these values f o r  t h e i r  s intered counterparts,  the porous s t a in -  

l e s s  steels. As a r e s u l t ,  it was necessary t o  measure the thermal d i f fus-  

i v i t y  of the AIS1 316 porous s t a i n l e s s  steel used f o r  the porous wall  i n  

t h i s  study. 

To avoid the problems of steady s t a t e  measurement ( large amounts 

of t i m e  necessary t o  a t t a i n  equilibrium before measurements and of the 

high temperature heat losses)  a t rans ien t  technique f o r  measuring the 

d i f f u s i v i t y  of consolidated mater ia ls  was used. 

cedures developed by Boozer 

Engineering Department of the University of Cal i fornia ,  Berkeley. The 

method used was one i n  which temperature measurements were made during 

a period of unsteady s t a t e  heat flow. 

i n  diameter  and 2-1/4 inches long, were centered i n  a e l e c t r i c  core 

furnace. The furnace temperature was controlled t o  e s t a b l i s h  a l i n e a r  

r a t e  of temperature r i s e  a t  the edge of the cyl inder .  

t r ans i en t  heating period data were provided such that the thermal d i f fus-  

i v i t y  could be calculated continuously over a temperature range from 200 

t o  1800 OF. 

The apparatus and pro- 

were made ava i lab le  through the Petroleum 30 

Cylindrical  samples, 1-1/8 inches 

After  an i n i t i a l  

The 2-1/4 inch sample was composed of 9 disks  1-1/8 inches i n  

diameter stacked and d r i l l e d  as indicated i n  Fig. A-1. Thermocouple 

holes were precisely d r i l l e d  pa ra l l e l  t o  the axis along isotherms t o  

prevent heat  loss and provide accurate measurements. Five 0.070 inch 

diameter holes were d r i l l e d  to  accommodate P t - P t  10% Rh thermocouples 

within ceramic insu la t ing  tubes. The center and three edge Pt-Pt 102 Rh 
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thermocouples were used t o  measure the edge temperatures. 

long cy l indr ica l  sect ions of a mater ia l  whose thermal d i f f u s i v i t y  was i n  

the same range as the porous s t a i n l e s s  s t e e l  were used a t  e i t h e r  end of 

the t e s t  sample t o  reduce end e f f e c t s .  

TWO 2-1/4 inch 

The test sample and end pieces were placed i n  the two inch dia-  

meter f i r e b r i c k  insulated e l e c t r i c  core furnace, as indicated i n  Fig. A-2. 

The power t o  the furnace was supplied by a motor driven auto transformer. 

The furnace was control led t o  a l i n e a r  temperature increase of 22 OF per 

minute by a Leeds and Northrup Speedomax Type G Controller.  The control  

thermocouple was located close t o  the inner furnace w a l l .  A schematic 

diagram of the apparatus i s  provided i n  Fig.  A - 3 .  

The basic  governing equation f o r  the c y l i n d r i c a l  flow of heat 

through a homogeneous, i so t ropic  medium, whose thermal conductivity i s  

independent of temperature, i s  

I n i t i a l  and boundary conditions are: 

I.C. T(r,o) = f o r  8 = 0  O < _ r s a  
TO 

B. C.  T(a,e) = T~ + he f o r  8 > 0 (A-2) 

T(o,8) is f i n i t e  

The solution of t h i s  s e t  of equations is: 
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where Bn - - nth root  of Bessels equation Jo(aBn) = 0 

h = heating r a t e  

. a = distance between edge and center  thermocouples. 

Considering only the l i nea r  pa r t  of the heating time one may solve fo r  

the d i f fus iv i ty .  

aLh a = -  4AT 

where C% = thermal d i f fus iv i ty  

a = sample radius to  measuring points 

h = heating r a t e  

AT = edge-center temperature d i f f e ren t i a l  

Of course f o r  most natural  materials,  the thermal conductivity i s  

temperature dependent, decreasing with increasing temperature. To evaluate 

30 the e r ro r  i n  using Eq. (A-4) f o r  a t ruly var iab le  d i f fus iv i ty  case Boozer 

solved f o r  temperature d is t r ibu t ions  i n  mater ia ls  f o r  which published tem- 

perature-diffusivi ty  data were avai lable  and solved f o r  d i f fus iv i ty  using 

Eq. (A-4). The l a rges t  e r ro r  noted was 25% a t  the extreme temperature con- 

d i t i on .  The agreement seems adequate f o r  engineering purposes. Analys is  

of experimental e r ro r s  predicted to  be included i n  the measured value of 

thermal d i f f u s i v i t y  was computed t o  be approximately plus o r  minus 10%. 

Several runs over the e n t i r e  temperature range were made t o  determine i f  

any accumulative prec ip i ta t ion  of carbon o r  c r y s t a l  transformations occurred; 

none were indicated by the data. 

The information resu l t ing  from the above examination of the porous 

s t a i n l e s s  s t e e l  used i s  summarized i n  Fig. A-4. It is compared with pub- 

l ished values f o r  equivalent so l id  s t a in l e s s  s t e e l .  
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APPENDIX B: DETERMINATION OF WALL CONCENTRATIONS 

I n  a process where both mass i n j e c t i o n  of a foreign gas and thermal 

dissociat ion of t h a t  gas occur, the  d i f fus ion  of various species due t o  con- 

centrat ion gradients may govern the magnitudes of both momentum and energy 

t r ans fe r ,  Although i t  i s  des i r ab le  t o  know the l o c a l  concentration varia- 

t ions  across  the e n t i r e  w a l l  boundary layer ,  it i s  o f t en  s u f f i c i e n t  t o  

s t i p u l a t e  concentrations a t  key poin ts  such as a t  the w a l l  and the f r e e  

stream i n  a boundary layer problem. 

predict  the probable concentration d i s t r i b u t i o n  and wal l  concentration from 

the  f r e e  stream concentration and the  blowing parameter,  he very nature of 

t he  approximate nature of t h i s  e f f o r t  makes i t  des i r ab le  t o  check experf- 

mentally such values f o r  ar: l e a s t  a few poin ts  on the  blowing surface.  

While semi-empirical ca l cu la t ions  

D t l e  t o  these considerations small samples of combustion rnd 

in j ec t ion  gas were drawn from the porous blowing surface during the 

various experimental tes ts  and capsuled a t  atmospheric pressure,  These 

samples were subsequently introduced i n t o  a gas chromatograph ana lys i s  

u n i t  spec i f i ca l ly  designed f o r  the products present during oxy-acetylene 

torch  operation. The species expected i n  an oxy-acetylene flame burning 

neut ra l ly ,  o r  i n  a one t o  one fue l  r a t i o ,  a r e  CO, H2$ and H. Under idea l  

conditions s o l i d  C, unburned acetylene C2H2> 02$ o r  any o the r  species a r e  

absent. The apparatus w a s  designed t o  d i f f e r e n t i a t e  CO2* CO, H2? and El2" 

Atomic hydrogen was not  expected a t  the w a l l ,  which remained a t  tempera- 

tu res  below the leve l  of d i ssoc ia t ion .  

The samples were drawn from the wal l  surface through small 

diameter s t a i n l e s s  s t e e l  hypodermic tubing i n t o  sample holders by a Low- 

suction a sp i r a to r .  A simple a s p i r a t o r  of low-suction type was used i n  
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order that the boundary layer  be disturbed the minimum amount and i n  order 

that samples obtained be a t ,  o r  very near, atmospheric pressure. Previous 

inves t iga tors  of the gas products i n  rocket fumes, torches, o r  plasmas have 

experienced contamination of sanples by the atmosphere whenever the samples 

were taken o r  stored a t  l e s s  than atmospheric pressure.  

Chromatography i s  a technique f o r  the separation of components 

fron! a mixture o r  a solution. However, as technical ly  used f o r  quant i ta-  

t i v e  o r  q u a l i t a t i v e  study of gas mixtures, the procedure must include noc 

only separation, but a l s o  detect ion of t h e  separated const i tuents .  3 4 , 3 5  

The separation system normally cons is t s  of a two-phase system. 

One phase i s  fixed o r  s ta t ionary,  and the other  i s  mobile. The s ta t ionary  

phase which tends t o  absorb and disperse the various const i tuents  of the 

moving sample phase may be a l iqu id  d is t r ibu ted  on a s o l i d  support o r  

roerely an absorbent s o l i d  such as activated charcoal, s i l i c a  g e l s ,  

molecular s ieves ,  e t c ,  Elution analysis  is usually the preferred method 

t o  introduce a sample gas t o  a chromatograph column of the s ta t ionary  

phase. By t h i s  method, the sample mixture i s  introduced i n t o  a continuous 

scream of c a r r i e r  gas which moves the individual components through the 

column a t  d i f f e r e n t  speeds, Each component w i l l  move a t  a r a t e  depending 

on i t s  p a r t i c u l a r  a f f i n i t y  f o r  th2 colmn mater ia l .  

Many d i f f e r e n t  types of detectors  have been proposed and used 

i n  gas chromatography. Among ochers, these include inf ra red  analyzer,  

hydrogen flame detector ,  mass spectrometer, flame ionizat ion,  and thermal 

conductivity c e l l s .  The thermal conducttvity c e l l  i s  the most widely used 
. 

detector .  Basically it cons is t s  of a hot wire fi lament held in the center  

of a stcall tube o r  metal block through which the gas passes. The filament 

i s  heated with e l e c t r i c  current and the temperature r i s e s  t o  some constant 
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value which depends on the cur ren t ,  nature of the gas ,  and flow rate, The 

ce l l s  are usually constructed so that they have two s ides ,  a reference s ide  

and a sensing s ide .  

the  arms of a Wheatstone bridge. I f  the two s ides  of t he  c e i l  are f i l l e d  

with the same gas and have i d e n t i c a l  conditions of current  and r e s i s t ance  

the bridge w i l l  be balanced and no s igna l  w i l l  be r eg i s t e red ,  

thermal conductivity of the gas on the sensing s ide  i s  lower o r  higher 

than the thermal conductivity of the gas on the  reference s ide ,  then  the 

temperature of the filament on the sensing s ide  w i l l  d i f f e r  from zh&t 02 

the other s ide  and thus t h i s  difference may be recorded versus t "  ime On E 

One o r  more fi laments i s  placed i n  each s ide  and made 

I f  the 

m v  recorder. 

The apparatus used throughout most of the ana lys i s  of sarn2les 

from the oxy-acetylene flame system was a Beckman GC-2 Gas Cl?romtograpb, 

It contained a 13X molecular s ieve  four  f e e t  long s u i t a b i e  t o  sepalrtit.2, 

He, H2' CO, CH4, N2 and OZp and had a thermal conductivity c e i l  detleccor, 

(See Fig. B-l)* In  order t o  de t ec t  H e  i n  a given sample and a l s o  i n  crd.-a. 

t o  accentuate the presence of H ni t rogen was used as a carr ier  gas .  
2 9  

The detector  was ca l ib ra t ed  with the  ni t rogen c a r r i e r  and EaciL- 

vidual samples of the  gases a t  a given carr ier  gas flow r a t e ,  a given 

filament temperature, and a given column temperature. This provided in,- 

formation on the l i n e a r i t y  of the equipment response a t  d i f f e r e n t  a t tenu-  

a t i o n  s e t t i n g s  and sample s i z e s  and the s e n s i t i v i t y  f a c t o r s  f o r  the 

de t ec to r ' s  response t o  various gases. 

When two sample components are compared a t  equal volumetric 

amounts, then the  r e l a t i v e  s e n s i t i v i t y  f a c t o r  may be expressed as 

Ai 

AR 
- -  Ki - 
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where Ki = s e n s i t i v i t y  f ac to r  of component i 

= integrated s ignal  on area  from de tec tor  f o r  sample i 

= integrated s igna l  on a rea  from de tec tor  f o r  reference sample, 

Ai 

AR 

To determine the volumetric percent of sample i in a mixture from the 

chromatograph output response then wri te  

A ~ / K ~ '  x 100 

1 Ai/Kil 

- X - 
i v  

i 

I n  terms of mass f r ac t ions  

Mi xi 
w -  i -  

where Mi = molecular weight of species  i. 

A typ ica l  chromatograph record i s  shown i n  Fig.  B-2  and concen- 

t r a t i o n  r e s u l t s  a r e  displayed in  F i g s .  16 and 1 7 .  
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FIGURE 8-2: GAS CHROMPTOGRPPH RECORD 

Beckman CC-2 Chromatograph 

C a r r i e r  Gas : Nitrogen 

Filament Current: 150 ma 

Regulator Pressure: 2 1  psia  

Thermal Compartment 

Sample: R u n  No. 37, probe no. 1 
Sample Size: 2.5 cc  

Temperature : 400 c 

Sens i t i v i ty  Factors: 

%e = 3.86 

y’(2 = 7-38 
= 1.00 KC HL 

K = 0.1L1 CO 

Corrected Mass Fract ions : 

= 10.8% 
H2 

= 89.2% 
LJ co 

H Y D  8 0 7 2  



APPENDIX C: ERROR ANALYSIS 

The propagation of random e r r o r s  i n t o  the r e s u l t s  of an experiment 

l i m i t s  the extent  t o  which conclusions may be drawn from empirical  da ta .  

Hence it  i s  important t o  f i x  a value t o  the "uncertainty" assoc ia ted  with 

numbers obtained d i r e c t l y  o r  i nd i r ec t ly  through experimentation. 

of s t a t i s t i c a l  ana lys i s  may be transposed i n t o  a scheme t o  determine the 

probabi l i ty  t h a t  any given point  of reduced data  i s  within a c e r t a i n  allow- 

ab le  deviation from the t rue  condition. 

The r e s u l t s  

By a simple procedure of expanding possible  e r r o r s  and t h e i r  e f f e c t s  

i n  Taylor s e r i e s  and comparing t h i s  with the s t ruc tu re  of the standard s t a t i s -  

t i c a l  term, "standard deviation," one may express the probable e r r o r  i n  a 

function u(x,yyz)  due t o  random va r i a t ion  i n  i t s  independent va r i ab le s  

x ,  YY = a s  

2 2 2 2 2 2 '  
r - U U = k k )  (>)+($) (>) +(&) (>) 

where r = probable e r r o r  (any point  of the data has a one to  one 
U 

chance of being within ru of the ac tua l  value u) 

r r r = probable e r r o r s  i n  independent var iab les  determined x' y' z 

from instrument l e a s t  count and experimenter 's  

i n t u i t i v e  est imat ion of data  value. 

Several per t inent  funct ions and t h e i r  probable va r i a t ions  a r e  

discussed below. 

Free Stream Flame Temperature: 

Although Russ predicted a maximum va r i a t ion  of +150°R i n  measure- 

ments due t o  va r i a t ions  from person t o  person, v a r i a t i o n  i n  the flame, e t c , ,  
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i t  was f e l t  that improved instrumentation and procedures supported a probable 

e r r o r  of +50°R here. 12 

Free Stream Velocity: 

Evaluation of Eq. (3.11) a s  out.lined above w i l l  lead t o  the follow- 

ing re la t ion :  

2 2 2 2 r - - -  U 

e 2 1  U 

Accepting a l e a s t  count f o r  the inclined manometer term Ah of 0.01 inch, 

t h i s  revea ls  a probable e r r o r  of 1.4%. 

Total  Mass Flow Rate Injected Gas: 

The cont ro l l ing  parameter turns out  t o  be the sca le  reading of the 

gas flowrator.  

of the average s e t t i n g  of 2 SCFM, the probable e r r o r  is estimated t o  be 

only 1%. 

Since t h i s  instrument may be eas i ly  read within 0.02 SCFM 

N o  Transpirat ion Heat Flux: 

Equation (3.14) may a l s o  be evaluated i n  terms of E q .  ( C - l ) *  

There may be a probable e r r o r  i n  the ca lor ic  r i s e  i n  heat of 3%, a radia-  

I t i on  e r r o r  of up t o  12.2%, and an e r r o r  i n  the estimated heat loss t o  the 

I brick of 6.5%. These a l l  combine, however, i n t o  only a probable e r r o r  of 

4.25% i n  qo when the wall  temperature i s  2000'R. Most s i g n i f i c a n t  

uncer ta in t ies  a r e  the estimated p l a t e  emissivity and the in t e rp re t a t ion  
I 

I of the slopes of recorded temperatures. 
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Wall Temperature, P l a t e  Proper t ies ,  and P la t e  Emissivity: 

Although e r r o r s  were inherent i n  the w a l l  temperature measurements 

of the porous p l a t e  due t o  c a l i b r a t i o n  of the Visicorder  and breakdown of 

the thermal proper t ies  of the junct ion during the experiment, i t  was f e l t  

t h a t  f a i r e d  data  were v a l i d  within 2100'R a t  2000'R. 

On the bas i s  of Boozer's es t imat ion of the  e r r o r  inherent t o  h i s  

d i f  fu s iv i ty  measuring technique (Appendix A) the  proper t ies  of the porous 

s t a i n l e s s  s t e e l  were assumed accurate  within 210%. 

The porous p l a t e  emissivi ty  value of 0.65 was assumed within 

kO.10 of i t s  t rue  value. The order of magnitude measured i s  of t h a t  pre- 

dicted by Eckert f o r  porous mater ia l s .  

Heat F luxe s with Trans p i r a  t ion : 

The heat f l ux  with t r ansp i r a t ion  was ca lcu la ted  using Eq. ( 3 . 8 ) .  

The sensible  energy r i s e  of the in jec ted  f l u i d  was f e l t  t o  be accurate  t o  

k5.65% due t o  va r i a t ions  i n  loca l  mass in j ec t ion  o r  w a l l  temperature, The 

rad ia t ive  port ion might vary 215% primarily due t o  the est imat ion of the 

emissivi ty .  

Gaseous rad ia t ion  might vary 100%. 

Probable e r r o r  i n  streamwise wal l  conduction was k16.6%. 

The ne t  e f f e c t  on the heat  f l u x  term f o r  hydrogen in j ec t ion  a t  

the 1/2 inch p l a t e  pos i t ion  would be a probable e r r o r  of k7.7%, s l i g h t l y  

less f o r  helium in j ec t ion .  
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